Large Data Wave Maps

نویسنده

  • DANIEL TATARU
چکیده

In this article we prove a Sacks-Uhlenbeck/Struwe type global regularity result for wave-maps Φ : R → M into general compact target manifolds M.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 6 . 33 84 v 1 [ m at h . A P ] 1 8 Ju n 20 09 ENERGY DISPERSED LARGE DATA WAVE MAPS IN 2 + 1 DIMENSIONS

In this article we consider large data Wave-Maps from R into a compact Riemannian manifold (M, g), and we prove that regularity and dispersive bounds persist as long as a certain type of bulk (non-dispersive) concentration is absent. This is a companion to our concurrent article [21], which together with the present work establishes a full regularity theory for large data Wave-Maps.

متن کامل

Global Regularity of Wave Maps Iv. Absence of Stationary or Self-similar Solutions in the Energy Class

Using the harmonic map heat flow, we construct an energy class Ḣ1 for wave maps φ from two-dimensional Minkowski space R to hyperbolic spaces H, and then show (conditionally on a large data well-posedness claim for such wave maps) that no stationary, travelling, self-similar, or degenerate wave maps exist in this energy class. These results form three of the five claims required in [18] to prov...

متن کامل

Global Regularity of Wave Maps v. Large Data Local Wellposedness and Perturbation Theory in the Energy Class

Using the harmonic map heat flow and the function spaces of Tataru [27] and the author [20], we establish a large data local well-posedness result in the energy class for wave maps from two-dimensional Minkowski space R to hyperbolic spaces H . This is one of the five claims required in [24] to prove global regularity for such wave maps.

متن کامل

Local and Global Well-posedness of Wave Maps on R for Rough Data

We consider wave maps between Minkowski space R and an analytic manifold. Results include global existence for large data in Sobolev spaces Hs for s > 3/4, and in the scale-invariant norm L1,1. We prove local well-posedness in Hs for s > 3/4, and a negative well-posedness result for wave maps on R with data in Hn/2(R), n ≥ 1. Also included are positive and negative results for scattering.

متن کامل

Long Time Solutions for Wave Maps with Large Data

For 2 + 1 dimensional wave maps with S as the target, we show that for all positive numbers T0 > 0 and E0 > 0, there exist Cauchy initial data with energy at least E0, so that the solution’s life-span is at least [0, T0]. We assume neither symmetry nor closeness to harmonic maps.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009